
国土交通省 平成21年度第2回 住宅・建築物省CO₂推進モデル事業採択プロジェクト

大林組技術研究所 新本館 省CO2推進計画

株式会社 大林組

1-1. 省CO2への取組み:カーボンマイナスプログラム

2010年

C〇2削減率最高水準55%の実現

さらなる 省**CO**2へ

1-2. 計画概要

プロダクティビティ向上と省CO2を両立する知的創造拠点 技術を実証・展開する情報発信拠点を目指して

●施設概要

- •計画地:東京都清瀬市下清戸
- •敷地面積:69,401㎡
- •建物用途:研究所(事務所)
- •構造規模:鉄骨造[制震構造]地上3階
- ·延床面積:5,535㎡

大林組技術研究所 新本館 省CO2推進計画

OBAYASHI

2-1. 省CO₂技術マップ

パッシブシステム

エコルーフシステム

- ▶昼光利用トップライト
- ▶排熱及び暖気利用
- 太陽光発電

- ▶日射抑制 + バッファ空調
- ■風力発電
- ●外構湿潤舗装(打ち水システム)
- クールウォームピット
- 太陽熱利用給湯
- ●地中熱利用

など

自然換気システム

●大空間オフィスの自然換気

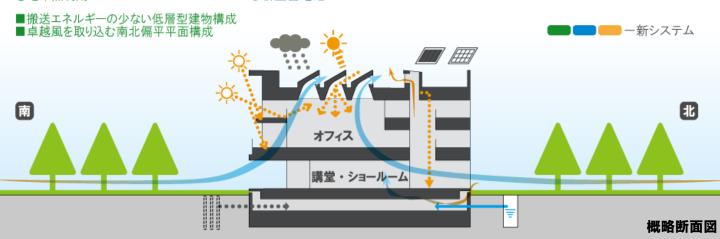
自然水利用システム

●雨水 / 井水再利用。

アクティブシステム

潜熱顕熱分離型 パーソナル放射新空調システム 地中熱利用 ヒートポンプ_{システム} 井水ハイブリッド_{システ}

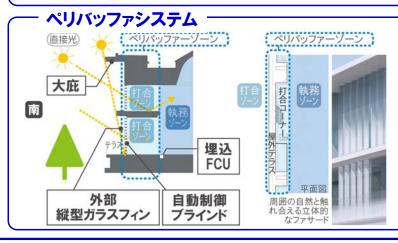
中温冷水(潜熱)蓄熱システル


IC タグによる 新照明・空調システム

- ▶高効率ヒートポンプモジュールチラー
- 水蓄熱利用 大温度差送水
- 外気冷房
- LED照明・CO2制御・変風量制御 コージェネ熱利用
- ●新型蓄電池システム

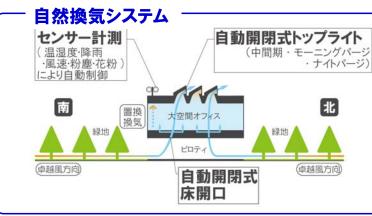
マネジメントシステム

- ●BEMSによる最適管理
- ●コミッショニングによるフィードバック ●省CO₂技術展示ショールーム/情報発信
- 省CO2技術の展開
- □環境教育活動


など

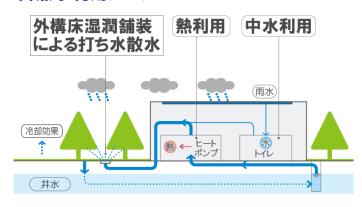
2-2. パッシブシステム

- ●建物を低層としオフィス上部に傾斜屋 根とトップライトを全面的に設置、自然 光を導入することで、照明を無点灯化。
- ●屋根面には太陽光発電パネルを最適な角度で設置、高効率に発電。屋根面への日射による入射熱は夏期は排熱、冬期は再利用。トップライトは自然換気にも利用。


- ●日射抑制のための大きな庇とガラス製 縦型フィンを組み合わせて、空調負荷の 少ない外装を構成。
- ●室内側ペリメーターゾーンには空調温度の緩和が可能な通路や打合コーナー等を屋外テラスと連続的に外周配置。内部側執務ゾーンへの影響を抑えた縁側緩衝空間(ペリバッファーゾーン)を形成して空調エネルギーを低減。

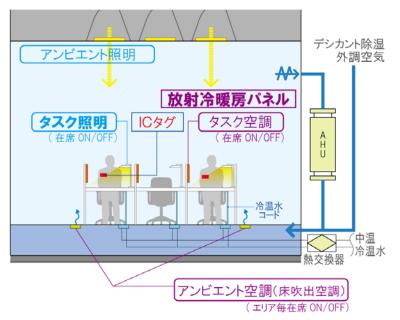
大林組技術研究所 新本館 省CO2推進計画

OBAYASHI



2-3. パッシブシステム

- ●南北方向の卓越風を自然換気に活用。 南側外構には緑地を設置、北側は既存 樹木を保存し外構舗装の照り返しによる 温度上昇の影響を排除。
- ●置換換気方式により自然換気モード時は大空間オフィス全体の空調を自動停止 し、空調エネルギーを大幅に低減。

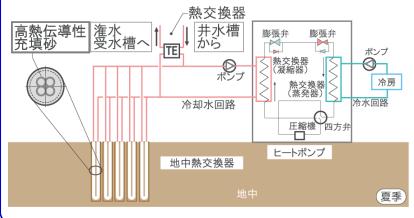

自然水利用システム

- ●敷地内の豊富な井水をカスケード利用 し、徹底した水の有効利用により省資源 化。
- ●アプローチエリアー帯に打ち水散水及 び広大な緑地の潅水として散水すること で周辺の冷却効果を図るとともに、取り 入れ外気温抑制によりエネルギーを低減。
- ●外構床を浸透性の高い湿潤舗装仕上 げとすることで敷地内で水を循環化。

2-4. アクティブシステム

潜熱・顕熱分離型パーソナル放射新空調システム/ICタグによる照明・空調新制御システム

- ●アンビエント域は、設定温度を緩和さ せた床吹出型置換換気空調とし、居住 域に限定した空調によって省エネ化。 タスク域は潜熱・顕熱分離型のパーソ ナル放射パネルをデスク近傍に設置し、 タスク域のパーソナル制御により快適 性を確保し、快適性と省エネを両立。
- ●研究員の移動による離席頻度が高い ため、ICタグにより不在の席を検知し、 その席のタスク照明・空調を制御するこ とにより無駄なエネルギーを徹底的に 削減。


大林組技術研究所 新本館 省CO2推進計画

OBAYASHI

2-5. アクティブシステム

地中熱利用ヒートポンプシステム~井水ハイブリッドシステム

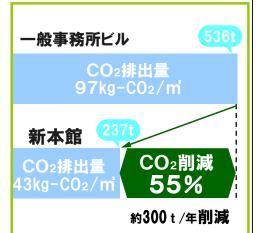
- ●年間を通して安定した地中温度の 有効利用により熱源機器を高効率化。
- ●地中熱との交換効率を向上させる 高熱伝導性充填砂の開発により採熱 効果を向上。
- ●井水の熱を補助熱源として利用し、 さらにカスケード利用として散水用に 水資源を有効活用。

潜熱蓄熱材を用いた新しい中温冷水蓄熱システム

- ●タスク空調の放射パネル用の冷水 及びデシカント空調機の熱処理用とし て中温冷水システムを構築するため、 中温度(13~20℃)で融解・凝固する 潜熱蓄熱材を用いた新しい中温冷水 蓄熱システムを導入。
- ●深夜電力を利用した夜間電力利用 により電力負荷を平準化。

2-6. マネジメントシステム マネジメントシステムの整備 利用者による省CO2活動 利用者が自主的にオフィス内の 自然換気モードを選択 CSRの一環として 外気条件がそろう ●前庭に省CO2講座の-大空間オフィス と選択可能ランフ 環として地域の小学生と が点灯 共に植樹. 緑の ●将来的には市内各所に 面的な拡大 苗木を購入 植樹. 新本館 11111 より冷涼な 自然風の 8000前庭に植樹の 削減費用の一部を 利用者にエコポイント 還元、インセンティブ を付与. エネルギー削減量を 取り入れ BEMSでチェック. ¥ ●省CO2講座 eco POINT ウェブで 情報発信 見える化 展示ショールームの設置とPR 継続的に推進 ●省CO₂ ・リアルタイムエコモニターシステムの設置 の 見える化 環境教室の開催と情報発信 展示ショールーム ただいまの発電量 技術紹介 さらなる 49 9 kg/h システム ¥900kw 構築 ・省CO2技術データの 省CO2/ 377 蓄積と展開 情報発信 前庭植樹:活動の見える化 見える化 **BEMS** コミッショニング

3. 環境性能とプロジェクトの波及効果



CASBEE S

BEE値 4.8

運用CO₂ 46% 削減

ライフサイクルCO₂ 35% 削減

OBAYASHI

パッシブシステム

大林組技術研究所 新本館 省CO2推進計画

郊外立地特性を活かした 自然力活用型施設としての普及性

アクティブシステム

次世代型省CO2最新技術の先導性

ハード/ソフト・設計から運用まで CO2削減の

トータルマネジメント

マネジメントシステム

利用者・地域参加型の省CO2 活動と運用システムの波及性

↑ 利用者個人

新本館利用者への省CO2 意識の啓蒙と広がり

-

清瀬市地域住民への 広がり / 植樹による地域の ヒートアイランド対策・CO2 の固定化

地域

CHARLES

他プロジェクトへの展開や情報発信により業界・社会全体への省CO2配慮型建築設備を普及促進

利用者/地域/社会 への波及効果 国土交通省 平成21年度第2回 住宅・建築物省CO₂推進モデル事業採択プロジェクト

SPRC4PJ(塩野義製薬研究新棟)

塩野義製薬株式会社 株式会社 竹中工務店

■研究新棟の意義

プロジェクトに対する想い

감목

社会的要請

- 生活習慣病や新型インフルエンザ等、 社会的ニーズの高い新薬の早期開発
- オーダーメイド医薬研究
- | 有用な新薬の継続的開発

企業としての課題

- 研究開発期間の短縮・効率化
- 地球環境負荷の小さい企業活動

塩野義製薬の基本方針

常に人々の健康を守るために必要な 最もよい薬を提供する。

最もよい薬とは、

- ①コンプライアンスを遵守
- ②社会的要請に対応
- ③社会的責務(環境問題)を実現したもの

白煙砂定

4拠点の研究所を集約化することによる、

- 各研究機能のシナジー効果
- コミュニケーション強化
- ナレッジマネジメント
- 研究者のモチベーションアップ
- 地球環境負荷の小さい研究所の構築

日標の分析

「研究の原単位の最大化」

新薬・創薬の成果量

研究時間×研究に投下するコスト・タスク

新薬・創薬の成果量

研究時間×研究に投下するエネルギー(CO2)

01

03

プロジェクトの方向性

具体的方策と着眼点

- ・都会の刺激をブレークスルーに生かす アーバンな立地に研究機能を集約
- ・研究者の集約
- ・実験エリアと検討・思考エリアの分離
- ・発想・思考を促す環境の整備
- ・自然的・人的刺激による ブレークスルーの助長
- ・情報交換機会の増強
- ・優秀な人材の継続的確保
- ・社会プライドを有する一員として社会 的研究者の養成
- ・継続的開発を可能にする環境づくり

- ・誇りと夢が持て、地球環境にやさしい、 信頼と安心のファシリティを持つ、 コミュニケーションに溢れた、 ひろびろコンパクトな研究所
- を有する100年使える研究所
 - を有する研究所

サスティナブル

+(

知的生産性の向上 → コンパクト・ラボ

■ロケーション

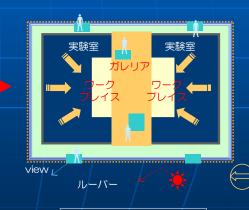
環境配慮型研究所を対外的にアピールできるロケーションです。

当該敷地は大阪府北部豊中市南端の 玄関口に位置する。

神崎川と阪神高速に隣接する。 阪神高速からの視認性大。

04

延べ面積 約44000㎡ 5階建ての創薬研究所です。

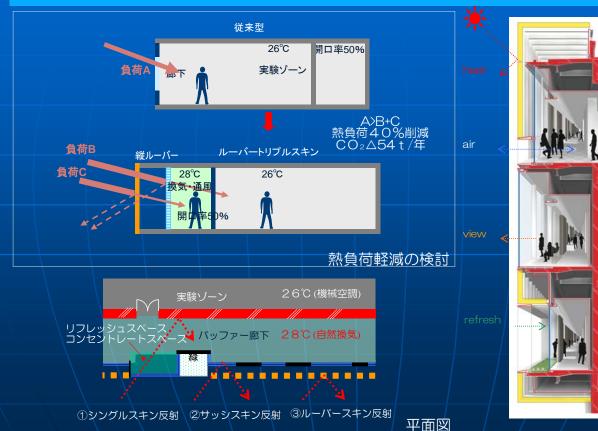

06

知的生産性向上と省002の両立を目指します。

- ・研究者は実験室に閉じて もりがち
- ・外周に熱的バッファーを設置
- ・研究者が回遊できる外周廊下とする。
- ・ワークプレイスの集約
- ・多様な"居場所"を設置
- ・コミュニケーションを増大させ 知的生産性を向上させる

従来型研究所

熱負荷制御

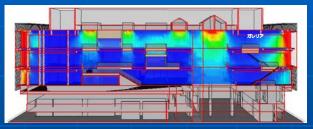

知的生産性向上

■ルーバートリプルスキンシステム

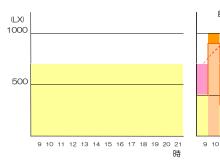
07

断面パース

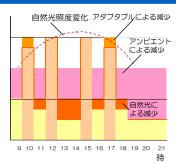
熱負荷40%を削減、省002年間54†削減。眺望、風、光で研究者の五感へ刺激を与えます。

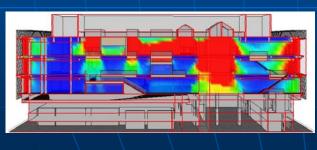

■昼光利用アダプタブルワークプレイス

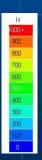
08


施設中央のアダプタブルワークプレイスは昼光利用によって年間7 t の省〇〇2を実現します。

*アダプタブル=ユーザーが個別に制御することが可能であること


■ガレリア照度シミュレーション


冬季(晴天時)


一般執務空間の照明

タスク・アンビエント照明 +自然採光+アダプタブル機能

夏季(晴天時)

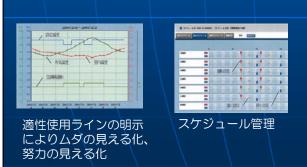
塔屋による間接光の利用

■ガレリア一体型ヴァーティカルオフィス

09

多様なコミュニケーションを誘発し知的生産性を向上させます。

更新性を高めたしつらえとしてLCCO2の低減を図ります。




■施工、マネジメントによる省CO2の提案

PDCAサイクルと"ムダ・努力"の見える化。トータル年間2028 t の省CO2を図ります。

BEMSとインセンティブの管理

国土交通省 平成21年度第2回 住宅・建築物省CO。推進モデル事業採択プロジェクト

財団法人竹田綜合病院 総合医療センター省CO2推進事業

財団法人竹田綜合病院 東北エネルギーサービス株式会社

財団法人竹田綜合病院の概要

《竹田綜合病院の事業概要》

竹田綜合病院

地域医療支援病院

地域周産期母子医療センター

地域リハビリテーション広域支援センター

厚生労働省臨床研修指定病院 外国人臨床修練指定病院 日本医療機能評価機構

中国荊州市第一人民医院友好病院

DPC試行的適用参加病院 がん診療連携拠点病院

芦ノ牧温泉病院 山鹿クリニック

療養型病院(120床)完全型

竹田看護専門学校

エミネンス芦ノ牧 介護老人保健施設(116床)

精神科ディケア 介護福祉本部

《竹田綜合病院の四本柱》

信頼されるヘルス ケアサービスを提 供し、地域に貢献

財団法人竹田綜合病院

《プロジェクトの概要と目的》

建物老朽化に伴い、同一敷地内に建替え新築を行う。 [期工事ではこころの医療センターを建設(平成21年11月30日 に開院) し、今回 Ⅱ 期工事として、総合医療センターとエネルギーセンターの建設を行う。 【目的】 ・環境問題への対応による地域の皆様との更なる信頼関係構築 総合医療センター ・医療サービスの向上 総合医療センター 住所:会津若松市山鹿町3-27 HHHH エネルギーセンター 建物概要 規模:地上11階 構造:RC造(免震構造) 延床面積:約42,000㎡ 病床数:632床

111111

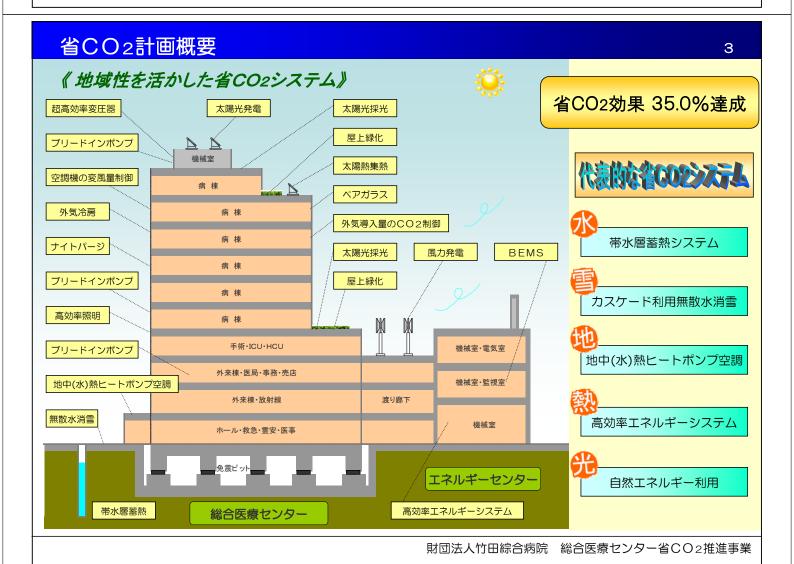
1111111111

こころの医療センター

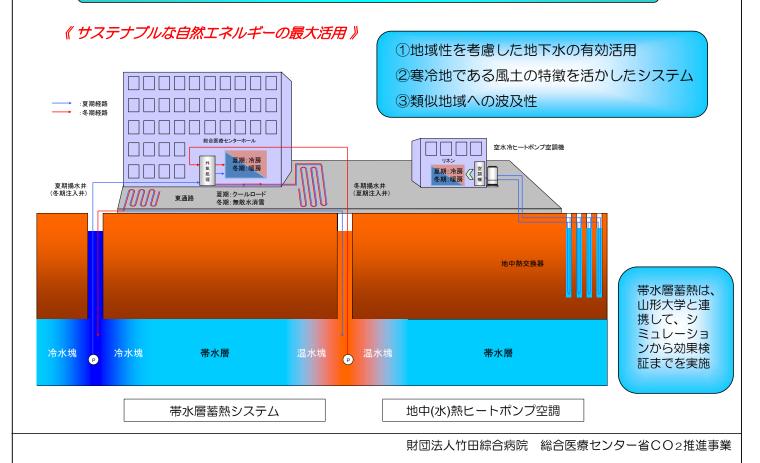
こころの医療センター

建物概要

規模:地上6階 構造:RC造


延床面積:約11,000㎡

病床数:204床


エネルギーセンター

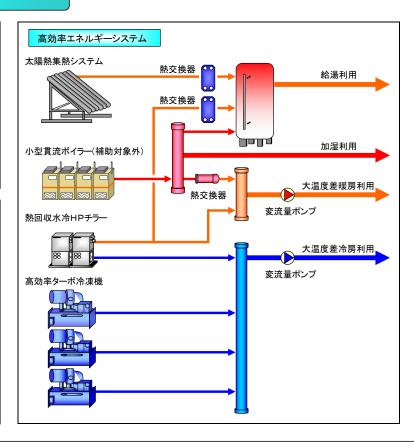
- ・竹田綜合病院で使用するエネルギー を一括供給
- ・BEMSにより、エネルギー管理を 一元化し、病院全体のエネルギー消費動向を把握
- 先進的な個別の省CO2技術を複合化
- 運用・管理のアウトソーシング化

財団法人竹田綜合病院 総合医療センター省CO2推進事業

帯水層蓄熱システム/地中(水)熱ヒートポンプ空調

導入する先導的省C〇2技術(2)

5


高効率エネルギーシステム

個別技術の複合化

- ・病院の熱負荷需要に合致した高効率 機器による最適システム化
- ・熱回収ヒートポンプのベース運転 による冷温熱の同時利用

ESP事業の適用

- ・機器をエネルギーセンターに集約し、 施設管理のプロフェッショナルによる 病院全体のエネルギー管理を実現
- ・コミッショニングによる最適運用管理
- ・リチューニング管理によるシステムの 健全化

財団法人竹田綜合病院 総合医療センター省CO2推進事業

財団法人竹田綜合病院 総合医療センター省CO2推進事業

国土交通省 平成21年度第2回 住宅・建築物省CO₂推進モデル事業採択プロジェクト

(仮称)京都水族館計画 /省CO2推進事業

オリックス不動産株式会社

オリックス不動産が目指す水族館とは

「水族館のあるくらし」を実現 ~新しいライフスタイルの提供・発信の場を目指します~

- ・地域の人々に愛される「文化・交流・賑わいの拠点」
- ・学校教育の枠を超えた「環境教育の場」

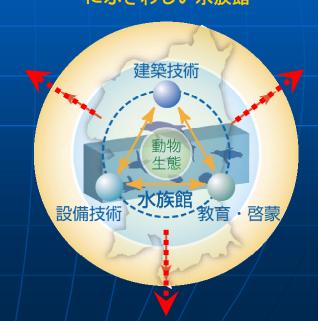
(仮称) 京都水族館の概要

- ◆国内初「内陸型大規模水族館」
- ◆「緑、水、光、風」がモチーフ 「環境共生型水族館」

◆「地元の誇れる施設」 「愛される施設」

2

省CO2への取り組みについて(全体像)


①パートナーシップの構築

②実効性のある省002技術

③環境教育・情報発信機能 の充実

『環境パビリオン』

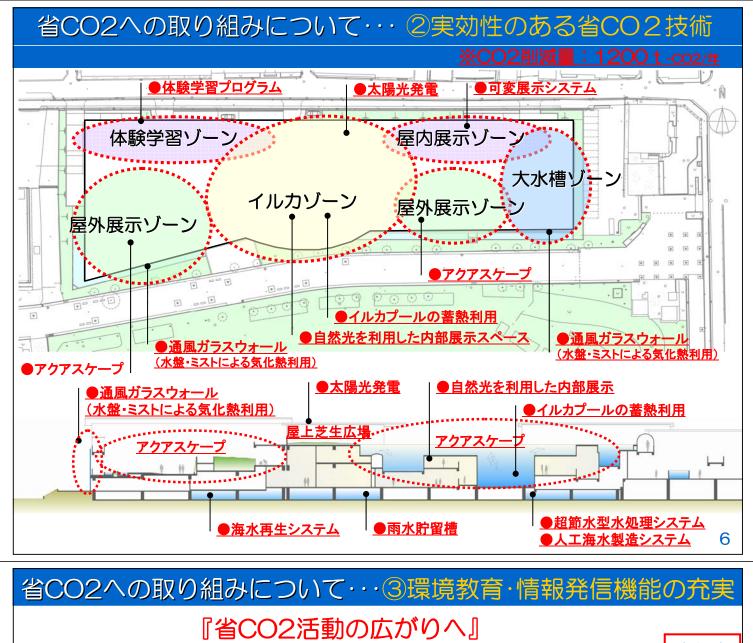
"環境モデル都市=京都市" にふさわしい水族館

4

省CO2への取り組みについて・・・ ①パートナーシップの構築

京都市 (環境政策局) (教育委員会事務局) (建設局)

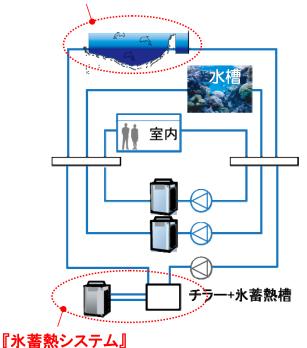
モデル都市提案

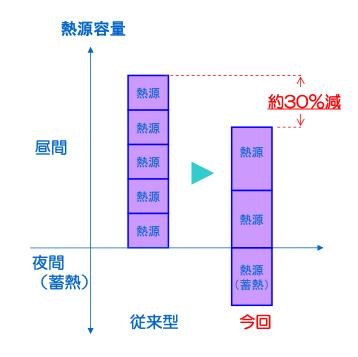

- □ 緑・住まい・まちづくり
- □ ライフスタイル
- □ 農り(みのり)、商い、ものづくり

関西電力 大阪ガス

地域 ボランティア

小中学校等

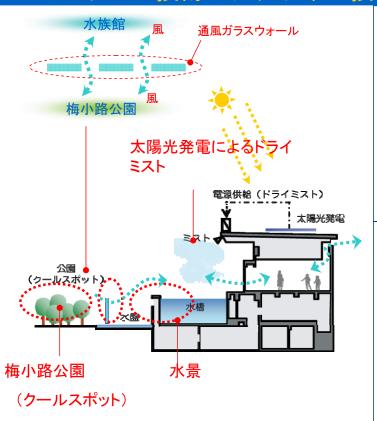



省CO2への取り組みについて···

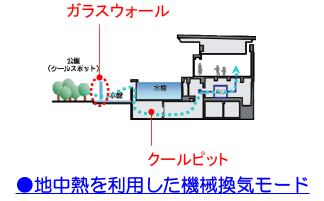
<水族館の特殊設備融合型熱源システム

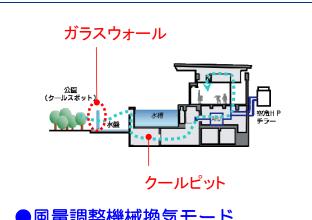
『イルカプール水蓄熱システム』

●熱源系統イメージ

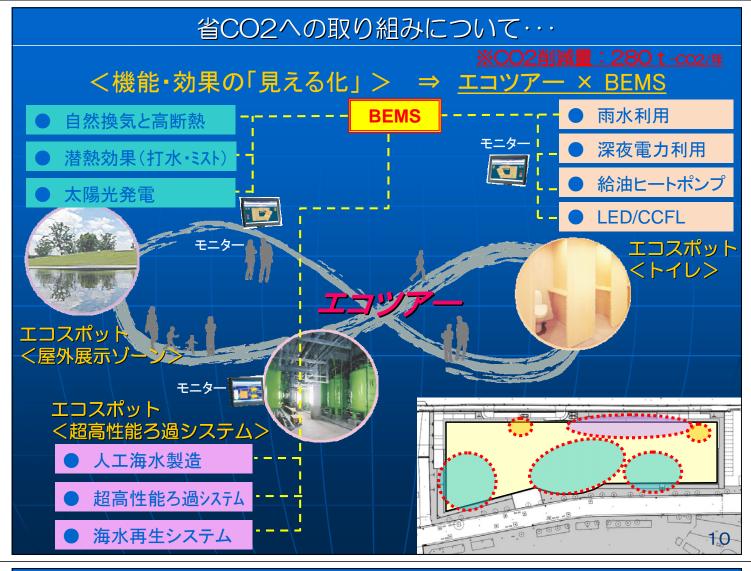


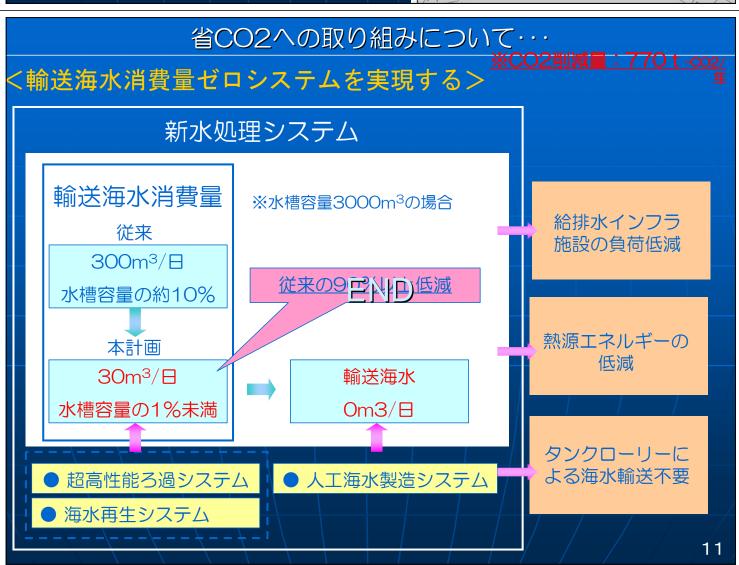
●蓄熱効果+補給水量削減効果


8


省CO2への取り組みについて···

<パッシブ技術とアクティブ技術を融合した換


●自然換気モード



●風量調整機械換気モード

9

